

SMT SHOW & TELL 2024

DÖRTH • 23RD, 24TH, 25TH JULY 2024

confidential

WELCOME TO DÖRTH & SCHOTTEL MARINE TECHNOLOGIES

A DAY TO LEARN, ASK QUESTIONS AND ENJOY THE SCHOTTEL GROUP HOSPITALITY

Welcome

The Day is Yours!

- Appreciate the time and effort made to join us in Germany
- Fire alarms, exits and toilets
 - On test site Behind Canteen
 - In building Outside road to front of building
- Tea, coffee, water & snacks available all day
- Storage available for personal possessions
- Photographs feel free and tag away! @SCHOTTEL Marine Technologies
- Lunch Please let us know what you would like from options
- SAFETY FIRST We want you to be safe on the test site
 - Morning Up close and personal
 - Afternoon Safe distance
 - Wear your allotted PPE
- QUESTIONS, QUESTIONS, QUESTIONS Ask away! That's what we are here for!
- Access to workspace available from 1500 1700 if you want time to check email
- Enjoy the day and for those staying in Boppard, we are around if you want to meet up tonight

Agenda

Time: 1000 – 1500 Central European Time (CET)

Activity	Responsible	Timing	Location
Welcome	Michael Hook & Ralf Starzmann	1000 – 1015	Reception & PAZ Conference Room
Introductions	All	1015 – 1030	PAZ Conference Room
Overview of Test Programme & Q&A	Nick Cresswell	1030 - 1100	PAZ Conference Room
Site Induction & PPE Issuance	Jason Clarkson	1100 - 1130	PAZ Conference Room & SMT Test Site
Test Site (1): Tour, Up-Close Asset, Swift Anchor/cores and Load Frame Visit & Q&A	Nick Cresswell	1130 – 1230	SMT Test Site
Lunch & Free Time	All	1230 - 1315	SCHOTTEL Canteen
Test Site (2): Test Anchor Installation Witness	Jason Clarkson	1315 – 1345	SMT Test Site
SCHOTTEL – Offshore Wind Solutions	Joachim Müller	1345 – 1400	PAZ Conference Room
SCHOTTEL GmbH Production Facility Tour	Sascha Scholz	1400 - 1445	SCHOTTEL Production Facility
Commercial Steps	Michael Hook	1445 – 1500	PAZ Conference Room
Q&A, Coffee and Networking	All	1500	PAZ Conference Room (space available for working until 1700)

SCHOTTEL | Müller | July 2024

Success Story

1921

Josef Becker (1897–1973) establishes his craftman's workshop in an old farmhouse in Spay/Germany.

195 Fisubsidii the

1958 – today

First international subsidiary is founded in the Netherlands; 14 more to follow.

1950 – today

Development and construction of the first SCHOTTEL RudderPropeller that becomes a worldwide synonym for 360degree manoeuvring. Today SCHOTTEL offers 9 different types of propulsion systems for various applications.

1967

propulsion

First harbour tug

with SCHOTTEL

Acquisition of a 15.4 % share in SCHOTTEL by Frydenbø Industri AS/Norway; 84.6 % still held by family members.

SCHOTTEL Industries GmbH

L Expansion of the portfolio with digital products and services

2015

SCHOTTEL Group Structure

SCHOTTEL

SCHOTTEL Maritime Group

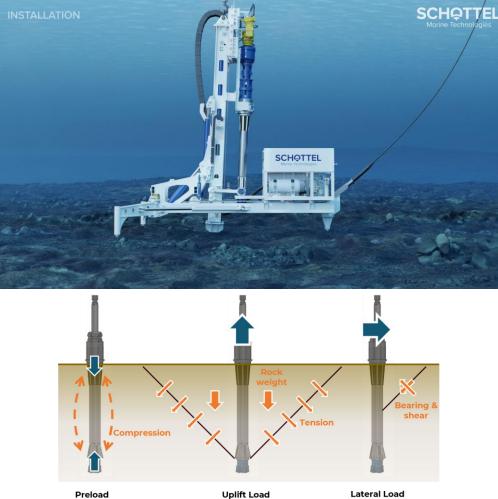
In a nutshell

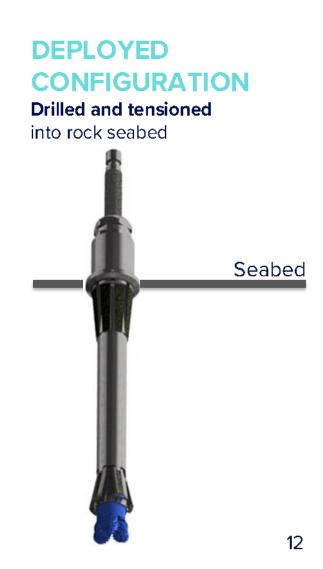
Who's Who Today?

The Team Looking after you – Feel free to ask them questions!

Name	Field	Good Person to Ask About?
Michael Hook	Business Development	General, Business Development & Commercial
Ralf Starzmann	Commercial	General, Business Development, Commercial & SCHOTTEL Group
Catrin Wickert	Marketing	Event planning, Marketing & Communications, SCHOTTEL Group
Sascha Scholz	Engineering	Engineering – Production & SCHOTTEL Group
Nick Cresswell	Engineering	Engineering – Assets and Swift Anchor
Jason Clarkson	Operations	Operations – Marine & Health and Safety

REFRESHER OF WHAT A SWIFT ANCHOR IS & HOW DO THEY WORK?


A DECADE OF DEVELOPMENT TO DEVELOP A TRANSFERABLE SOLUTION TO FOW


Anchor Installation & Decommissioning Overview

The Swift Anchor, a Self-Drilling, Groutless, Removeable Rock Anchor

DRILLING CONFIGURATION Ready to drill into the rock seabed Location where mooring interface installed - Not shown Seabed

Anchor loads and Geological Load Path

3rd Generation Swift Anchor Configuration

1t

Representative scale of Swift Anchor Used in a Marine Energy:

Weight: Total Length: Embedded Length in rock: Mooring Line Load Holding: Mooring Connection:

Material: Life: Mooring: Typical Installation time on seabed:

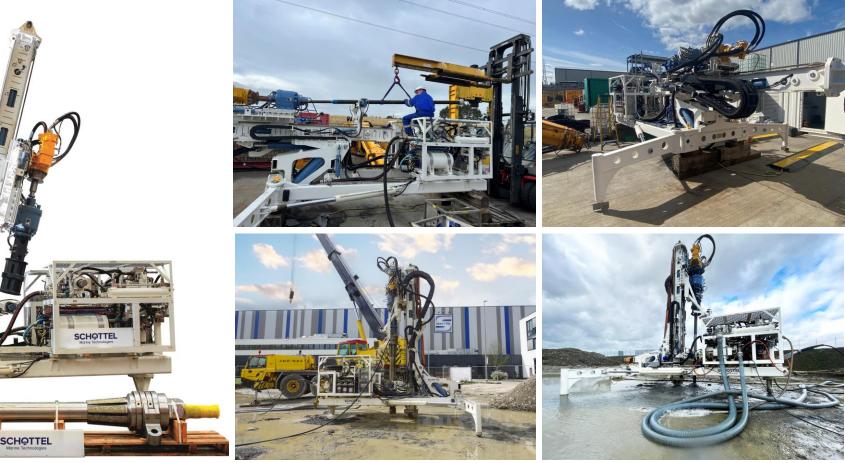
∾3m ∾2m ~200t Pad-eye on rotating interface Super Duplex Steel 20 – 25 years Semi-Taut ~30deg 25mins

This single Swift Anchor could displace a concrete gravity base of 500t - 600t

Representative Swift Anchor Scaled for Catenary FOW Device:

and have been the

Weight: Total Length: Embedded Length in rock: Catenary Mooring Line Load: Mooring Connection: Indicative rock strength (UCS): Material: Life: Typical Installation time on seabed: 3t – 15t ~4m – 8m ~3m – 6m ~700 to >1.200t Various options 25MPa - 100MPa Super Duplex Steel 20 - 25years ~2-3hrs


This single Swift Anchor could displace a drilled and grouted pile that takes days to install

Installation, Operation & Decommissioning Tools

AROV2 – Anchoring Remotely Operated Vehicle

- Installs rock anchors in single
 operation
- Operable to 1,000m
- Weighs 10te so only needs small cranes
- Can obtain core samples up to 4m in length
- A 3m anchor can be installed in 45 minutes deck to deck in 35m of water
- Shippable on a standard 20ft flat rack container

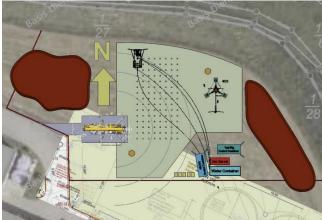
AROV2 – CORING & INSTALLATION TOOL

SWIFT ANCHOR LAND TRIALS

PROGRESS & UPDATE, INITIAL OUTCOMES AND DNV CERTIFICATION

Land (Quarry) Testing at Dörth

Site and Plan Overview


- Testing is being conducted at the **SCHOTTEL Group's main production facility** for core business in Dörth azimuth propulsion and manoeuvring systems as well as complete propulsion systems for vessels
- Facility is built on rock Overburden cleared to expose rock
- Equipment mobilised for trials:
 - AROV2
 - Control Container
 - Generator
 - Water storge facility (required for cooling and flushing)
 - Mobile Crane

SCHQI

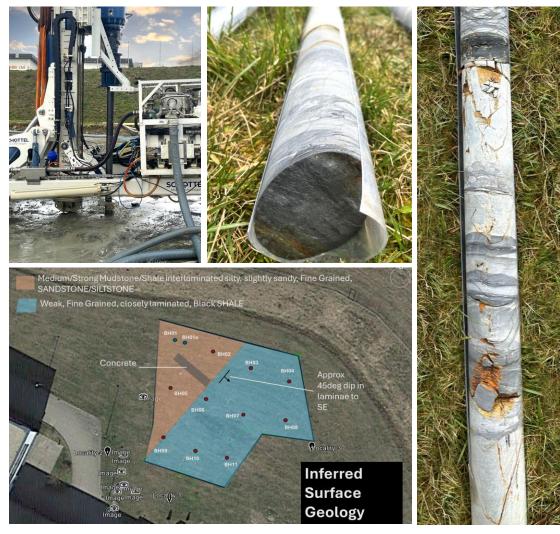
TFI

Land (Quarry) Testing at Dörth Objectives

- Complete all **acceptance testing** of Anchoring Remote Operating Vehicle ("AROV2") post modifications
- Complete a ground truthing exercise across test site to validate geotechnical properties. Undertaken with AROV2 in coring configuration
- Complete sequence tests of Swift Anchor installation to validate
 AROV2 operation and installation process of 3rd generation Swift Anchor
- DNV witness of full installation sequence "blind"
- Full installation of two Swift Anchors to facilitate load trials
- Complete load trials to meet DNV pre-agreed test plan
- Decommission two Swift Anchors using Remote Intervention Tool ("RIT")
- Submit final document pack to DNV to support issuance of Prototype Certification to DNV-SE-0163 and DNV-ST-0164 (tidal – with reference to floating wind DNV-ST-0119)

Land (Quarry) Testing at Dörth

Progress and Outcomes to Date


ltem No.	Description	Status	Notes	Target Date	Activity Outcome	No. of Times
1.	AROV2 Acceptance Tests	Complete			Core Samples	9
2.	Ground Truthing Across Test Site	Complete			Trial "Dummy Anchor" Installed Swift Anchor Installed	31 6
З.	Swift Anchor Installation Sequence Trials	Complete			Swift Anchor Removed	5
4.	DNV Witness of "Blind" Swift Anchor Installation	Complete	No visual references allowed. GUI interaction only. Test passed			E.
5.	Load Trials	WiP	Load frame ready – Load trials post event	End July		
6.	Decommission Swift Anchors at end of Load Trials	Not Started	Swift Anchor successfully removed during trials x 5 times	Early August		
7.	Final Document Pack Issued	WiP		Early August		

Site Investigation – Nature of Rock at Test Site

What are we drilling into?

- Site investigation conducted using **coring capability of AROV2** with a 3m, T6-116 Ø116mm core barrel, which retrieves a Ø93mm core
- Spread of samples taken across site and logged by SMT Senior
 Geotechnical Engineer
- Samples sent to **Aachen University** for laboratory testing to build ground model
- Relatively complex site for a small area with mix of:
 - Sandstone/siltstone to West
 - Shale to East
- Geotechnical assessment is ongoing to validate information to use for load test design
- Preliminary assessment indicates a UCS ~15-20 MPa and a GSI of 30-40

SMT's Rock Anchor Geotechnical Model (RAGM)

How do we Derive Rock Strength and Apply Factors of Safety?

Scaling of a Swift Anchor

- Sizing of Swift Anchor driven by geotechnical properties of rock (UCS & GSI, using Hoek-Brown), mooring load and mooring geometry
- Scaling undertaken based on SMT's own Rock
 Anchor Geotechnical Model

Beyond scaling undertaken to meet the mooring and geotechnical properties, the following **safety factors** are used:

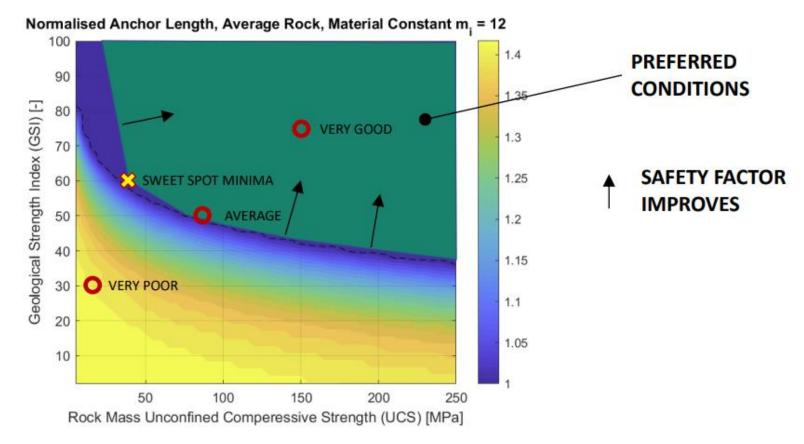
- Loads factored to DNV standards from mooring analyses used in the design loads
- Lower bound geotechnical characteristics taken from site investigation and assessment
- Material factors for both rock and steel applied from relevant **DNV standards**
- Geotechnical parameters reduced according to the relevant strata type for fatigue effects
- Tension capacity limit applied to rock mass in line with literature

ltem	Description	Key Reference
Derivation of Geotechnical Parameters	Geotechnical model as detailed in Hoek and Brown. This produces material constants based on the type of rock, rock quality and rock strength.	E. Hoek and E.T. Brown (1997), Practical estimates of rock mass strength [7]
Uplift Capacity Analysis	Method used has been adapted from literature on calculating the uplift capacity of grouted anchors (most similar available industry verified method). This assumes a rock mass cone forms at the anchor's lower taper. Tensile capacity of the rock limited to account for fracturing and quality of the rock mass.	
Lateral Capacity Analysis	Validated method for calculating the lateral capacity of socket piles installed into rock used.	K. Yang (2006), Analysis of laterally loaded drilled shafts in rock
Rock fatigue accounted for by applying global reduction in rock strength from undertaken on the fatigue behaviour range of rock types.		B. Cerfontaine, F. Collin (2017), Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives

Key reference documents:-

Hoek & Brown, Practical estimates of rock mass strength, International Journal of Rock Mechanics and Mining Sciences, Vol 34, No 8, 1997, pp 1165-1186

DNV–ST–0437 Loads and Site Conditions for Wind Turbines


DNV-ST-0119 Floating Wind Turbine Structures

Study - Swift Anchor Sizing Sensitivity in Uplift

Swift Anchor Size Sensitivity to UCS and GSI

- Swift Anchor size sensitive to geotechnical conditions as a direct result of strength (UCS) <u>and</u> quality (GSI).
- The relationship between a low strength and poor-quality rock can be seen with the increase in normalised Swift Anchor length
- Example shows that a geotechnical conditions above the dotted line have no negative influence in the normalised length of the Swift Anchor versus below which has an impact up to x1.4
- The dotted line also represents the cut-off which is applied to the rock mass tensile capacity within the RAGM

Note however, the Swift Anchor can work across a range of geotechnical properties and SCHOTTEL Marine Technologies has scaled anchors across a wide selection of rock properties.

Technical Learning Point

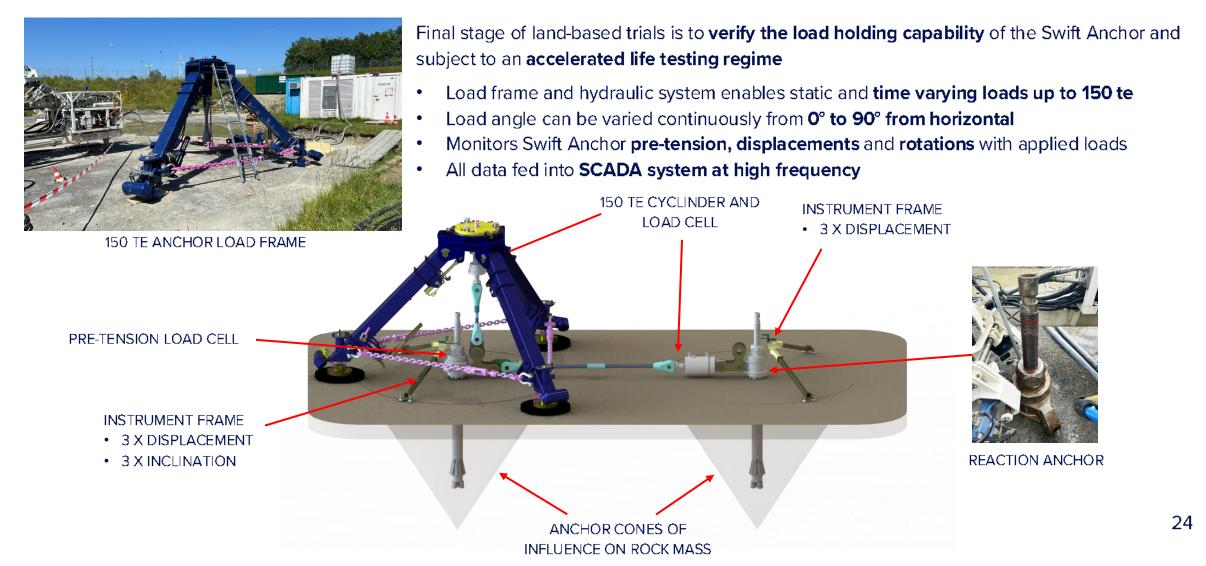
Cutting Finger Geometry Scaling

- Third generation anchor has much **larger cutting fingers** than previous generations (for strength)
- First time a Swift Anchor has been installed in "soft" rock, which **broke up** at surface under weight on bit
- Debris from surface breakup became lodged between lower taper and fingers
- Piece of debris wedged against side of hole and forced into gap underneath fingers, failing retention
- Fingers prematurely splayed down hole jamming anchor and causing failed install
- Temporary solution trialed with 3D printed inserts and minor modifications to existing fingers – partially successful but helped validate issue
- Final solution was to chamfer and re-face leading edge of fingers + 100% success rate since

No other technical issues have been experienced throughout the trial process.

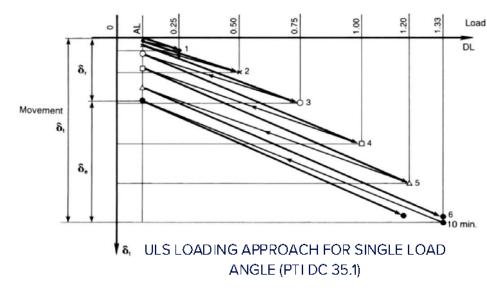
Drilling Performance Testing

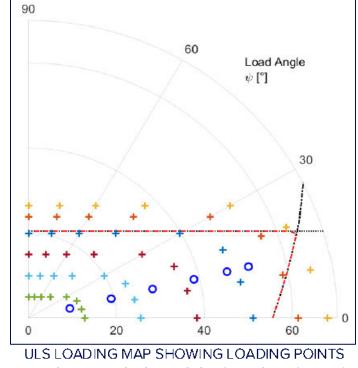
Validating Predictions


- Extensive test program to prove performance of AROV2, build drilling response model and prove Swift Anchor installation sequence
- 9 core samples taken, 31 "dummy" drills and 6 real Swift Anchor drills to date
- Full Swift Anchor installation sequence tested with staged approach adopted to mitigate risks as complexity increased
- All data logged from AROV2,
 >200 sensor inputs logged at high frequency
- Generate all data points from load trials for DNV prototype
 certification
- Allows proof load testing of Swift Anchors to be performed by AROV2 on installation in accordance with DNV-ST-0119/PTI DC 35.1

Swift Anchor Load Trials – Setup

Proving Load Holding Capacity




Swift Anchor Load Trials – Test Plan

Proving Load Holding Capacity

Load trials have been specified in accordance with **DNV & PTI standards** and the **test philosophy** agreed with **DNV**. These will include:

- ULS loading at 15° increments from 0° to 90°, taking a staged approach to 133% of the design load
- FLS loading following a **Damage Equivalent Loading (DEL) approach for 25 years** of the design fatigue
- A final test to failure in uplift to verify the residual capacity in the Swift Anchor

AND SWIFT ANCHOR DESIGN CAPACITY CURVES

The DNV Certification Process

Stage Gates to Certification

- 1st Generation of anchors achieved a DNV statement of fit for purpose
- 3rd Generation of rock anchors being certified against DNVGL-ST-0119 "Floating Wind Turbine Structures"
- Provides assurance at key lifecycle stages: Design, Manufacture, Installation, Operation and Decommissioning

Present Stage – Complete summer '24

DNV Statement of Feasibility Issued

26

SCHQI

Marine Technologies

DNV

SWIFT ANCHOR WET TESTS

NEXT STEP SUBSEA TRIALS

Subsea Deployment

Project Location and Objectives

- Site shortlisting undertaken and proposed location is Strangford Lough, Northern Ireland
 - Well known tidal test site as the location (MCTs SeaGen, Minesto, ORPC)
 - Site known to experience tidal flows up to 5 kts
 - Queens University have a dedicated pre-consented test location in the Lough
- Proposed wet test/subsea deployment will comprise of:
- Geotechnical site assessment using existing data and site visit (completed)
- Mobilisation of SMT assets including:
 - AROV2
 - Control Container
 - Load Frame
 - Swift Anchors x2
 - RIT
- Prior to wet installation, a dry load test in a representative rock form to the Lough will be undertaken (expected in local quarry)
- Installation of Swift Anchors at depth
- Installed Swift Anchors **connected to a load generating device**, e.g. a barge with drag plates and load monitoring devices to register load information
- RIT deployed to decommission Swift Anchor at end of load trial

Outcome: A proven Swift Anchor for rock which can be used for tidal scale projects and is scalable

for FLOW, reducing costs in areas of rock and even reduce pressure on wider supply chain

SITE INDUCTION & PPE

WE WANT TO KEEP YOU SAFE!

Health, Safety & Environment in the workplace

SCHOTTEL Marine Technologies is committed to providing a safe & healthy work environment

While on the premises "Everyone" must:

- Take reasonable care of yourself & others who may be affected by your actions in the workplace
- Co-operate with SCHOTTEL Marine Technologies on H&S matters
- Not to interfere with/misuse anything provided for H&S purposes
- If you want to touch, please ask.
- Report any hazards noted on the premises to Site Manager (Jason Clarkson)
- Report all incidents regardless of seriousness to the SCHOTTEL Marine Technologies Site Manager immediately
- Act respectively and appropriately to others
- Wear your PPE at all times

SCHOTTEL Marine Technologies will exercise diligence in adhering to and complying with all relevant regulations and requirements in the region it is operating in.

General Site Rules

- 1. Wear all required PPE while onsite (visitors require hard hats, safety glasses, safety shoes and hi-vis vest)
- 2. Never tamper with any safety equipment.
- Smoking is prohibited in the building and on the test site. Smoking is only allowed at the external designated smoking area only.
- 4. Consumption of drugs or alcohol is prohibited.
- 5. Visitors are required to stay in **designated areas** and **remain with their SCHOTTEL Marine Technologies representatives** at all times. Do not wander around facility or test site on your own.
- 6. The use of mobile phones while on test site is not permitted unless being used for photographs.

Site Hazards

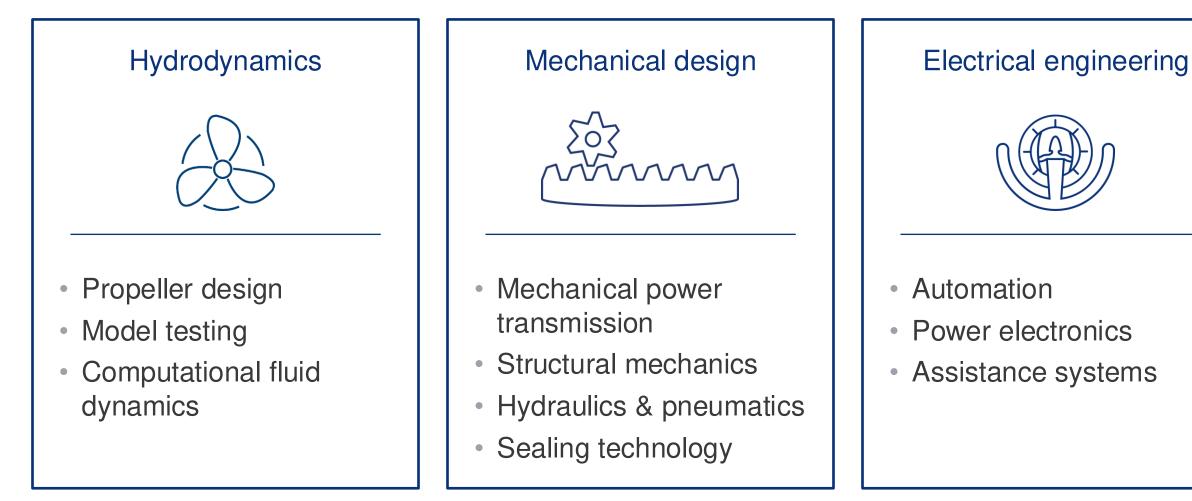
Hazards are present in all workplaces and identifying them is an ongoing process. SCHOTTEL Marine Technologies has identified hazards associated with this test site by conducting a HIRA (Hazard Identification and Risk Assessment).

Some of the general hazards associated with this site that a visitor could encounter are the following:

- Uneven ground Ruts and crevices from mud and equipment are present all over the site. It is important that you mind your footing.
- **Moving equipment** A mobile elevated work platform is present onsite as well as a crane. Movements are normally planned but as always equipment can move at any time.
- Rotating equipment The AROV2 has rotating heads. Never wear loose clothing when in the vicinity of the AROV2.
- Slips, trips, and Falls Uneven and potentially slippery (mud) ground, cables and waters lines can cause these events. Stay in your designated area when onsite as guided by SCHOTTEL Marine Technologies' representatives.
- High Voltage The AROV2 and its support equipment are powered by high voltage electricity. Always stay clear of high voltage areas and NEVER open cabinet doors containing high voltage equipment. All high voltage is clearly marked with the appropriate warnings (HIGH VOLTAGE)

While onsite please feel free to ask any questions you may have regarding health and safety. Knowing what can affect you in the workplace is our obligation.

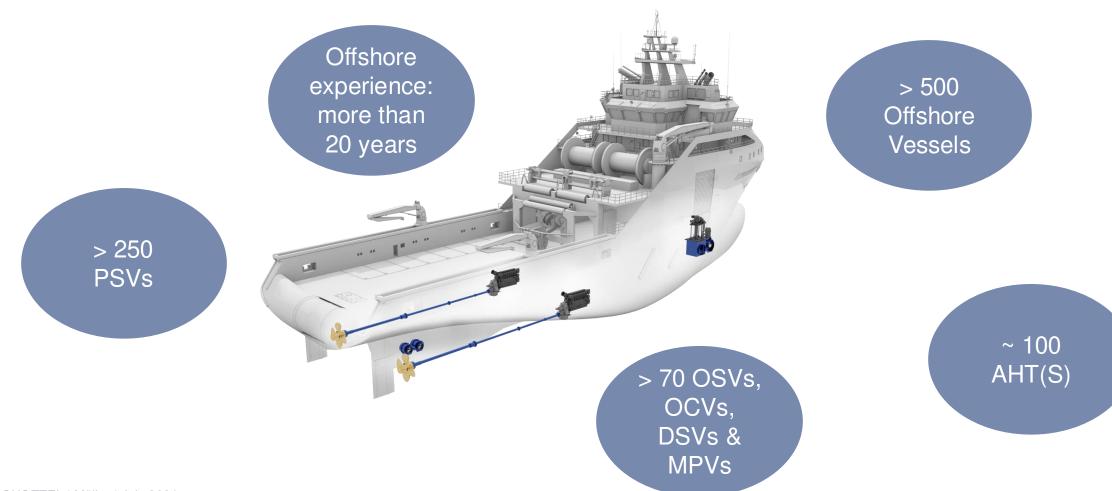
Overview of Test Site

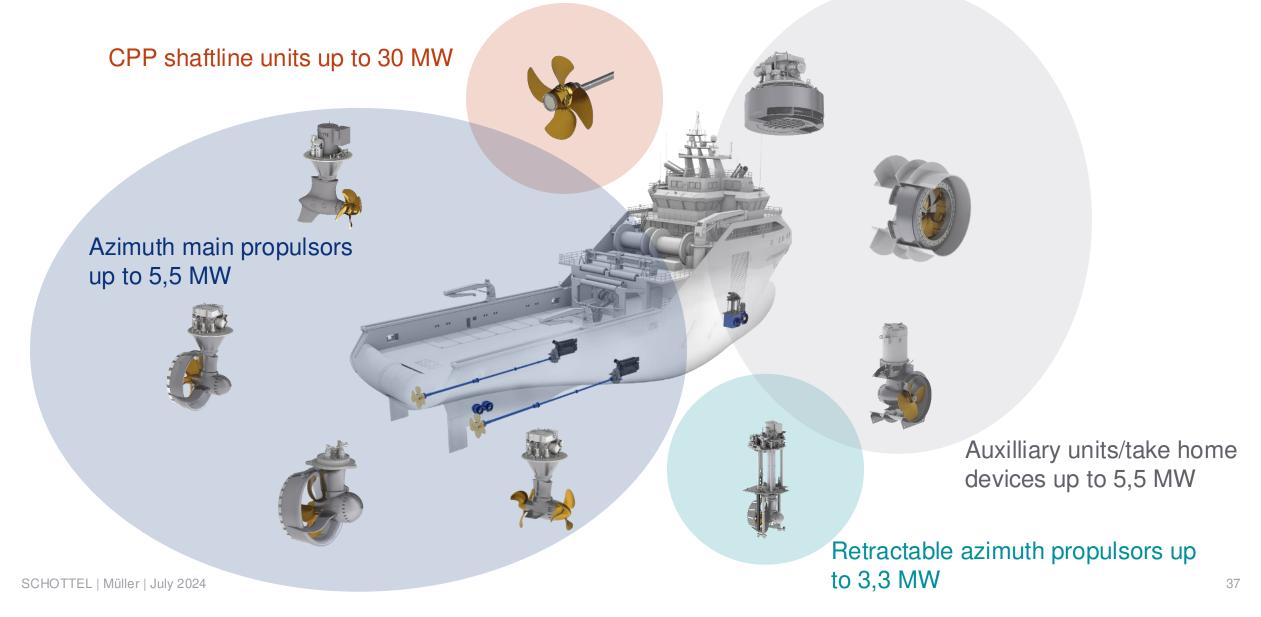


SCHOTTEL

OFFSHORE WIND SOLUTIONS

Propulsion Technology


Competence in customized engineering


Year-long experience in Offshore business

SCHOTTEL as propulsion package supplier

SCHOTTEL - Partner in offshore wind for decades

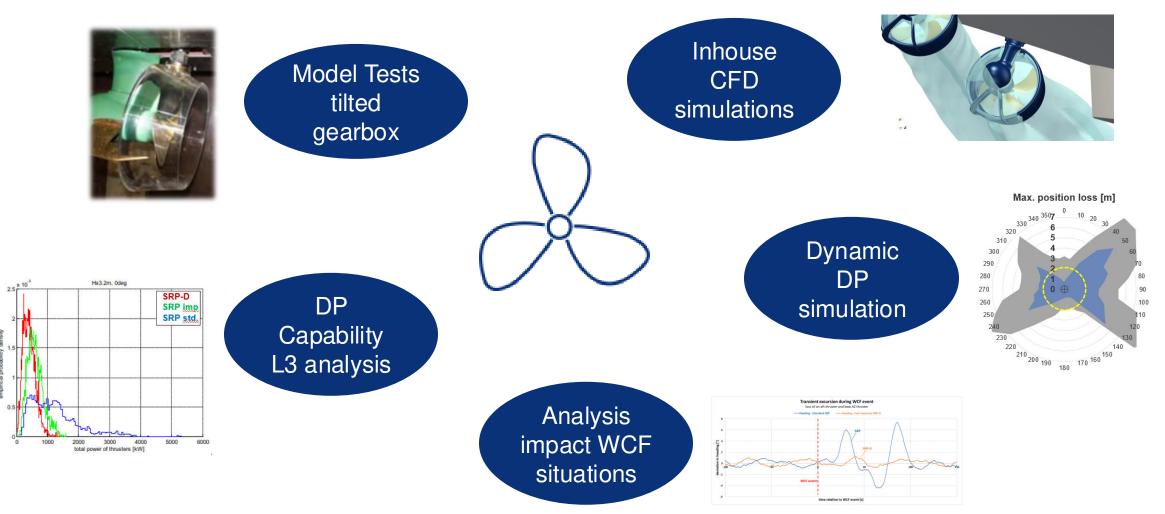
Installation Vessels, Cable Layers, Rock installation vessels and more...

PSV/OSV and other DP vessels

Rely on azimuth thrusters since 50+ years

IMO-DP (since 1960s)

- Focus on safety of the vessel and defining the grade of redundancy
- Highest IMO class III achievable by all propulsion systems


"SOV-DP" (since ~2015)

- Focus on save transfer of personnel even in rough
 weather
- Highest DP accuracy requires more dynamic propulsion

How to meet these new challenges?

SCHOTTEL | Müller | July 2024

SRP-D: next level DP performance

Dynamic fast response azimuth thruster

- Delivered 15,000+ SRPs since 1950
- Improved design for dynamic DP requirements

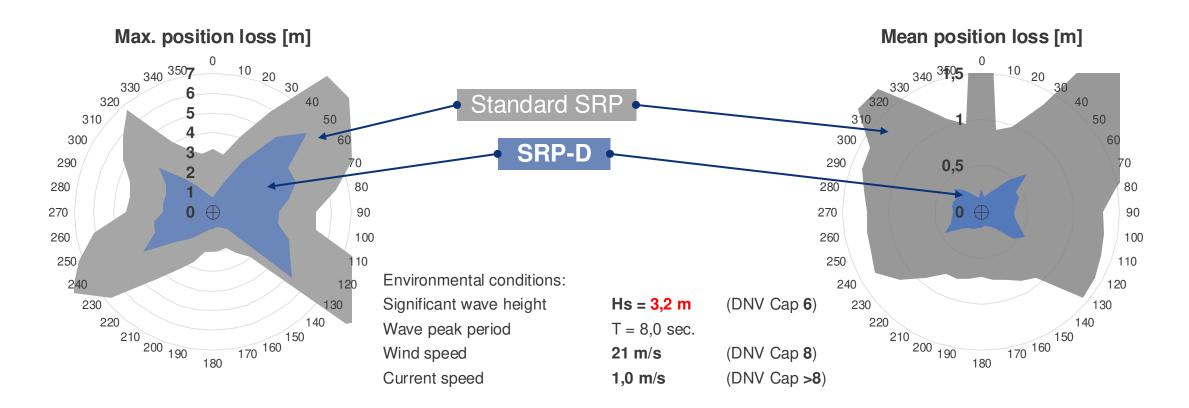
- + Highest thrust efficiency
- + Reduced thrust degradation & forbidden zones

Dynamic fast response L-Drive

Faster propeller acceleration E-motor free customer choice

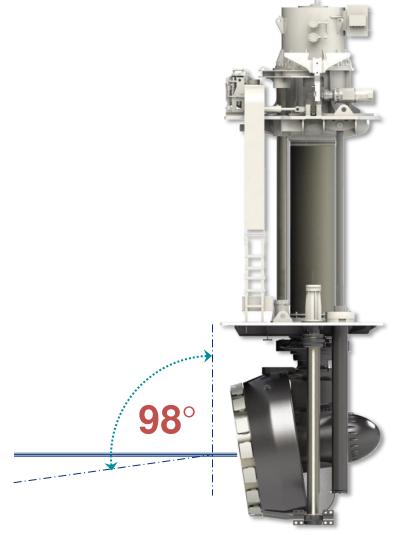
High-speed azimuth steering

Steering speed more than doubled

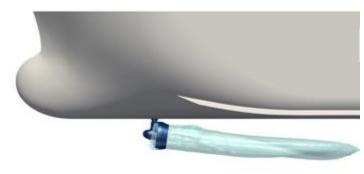

98° propeller axis tilt Increased thrust efficiency More thrust during DP

Significantly improved DP footprint ~50% overall

Dynamic DP simulation: accumulated result of 180 wave seeds



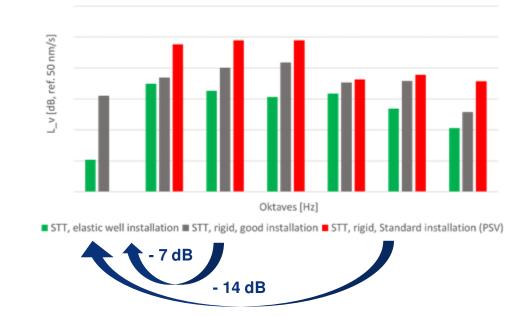
• Not considering thruster biasing and DP system tuning

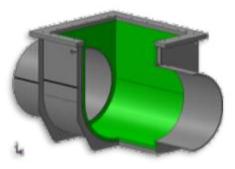


SCHOTTEL RETRACTABLE THRUSTER SRP-R

SRP-R 1,5 -3,5 MW series with optional 98° propeller axis

- Reduction of thruster-thruster & thruster-hull interactions
- LE- concept with integrated E-motor
- Also available with increased steering speeds

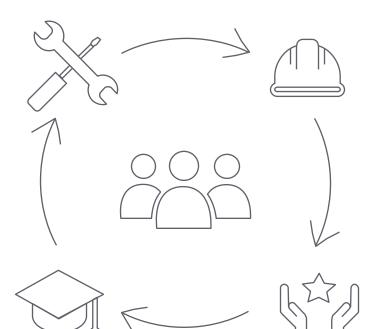

STT elastic well installation


Available for all STT-types

- Tunnel-in-tunnel design with elastic support for isolation of structure borne noise
- Optimized 5-bladed propeller
- Elastic foam coating on well structure optionally
- Further measurements
 - Optimized grids
 - Optimized tunnel entry geometry

100% nominal power

Service



Spare Parts

- 24/7 reliability
- Package solutions
- Maintenance agreements
- Trusted quality as OEM for decades

Academy

- Customer training courses in local language
- Trainings on site or in one of 5 SCHOTTEL training centres (GER, USA, SGP, AUS, BRA)
- Permanent international knowledge transfer for service technicians

Maintenance

- Globally standardized and proven high-quality service levels
- Proactive service concepts
- More than 170 highly-qualified service technicians worldwide

Upgrades

- Increase of the ship owner's profit
- Upgrade levels:
 - control systems
 - > thrusters
 - > systems for intelligent operative monitoring

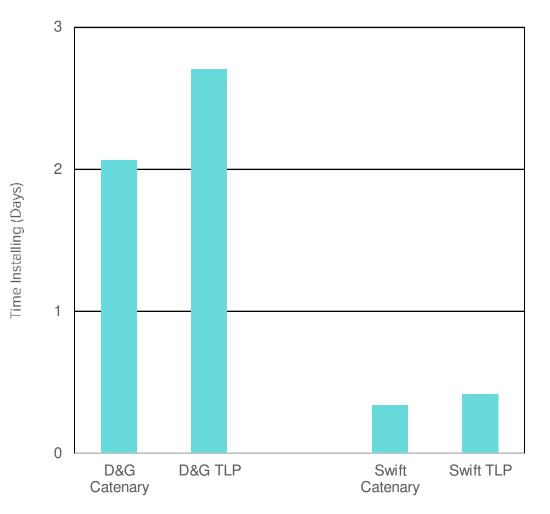
SCHOTTEL | Müller | July 2024

100+ worldwide sales agencies and service stations for customer proximity	YOUR	70+ years of competence in development & manufacture of propulsion systems
170+ service technicians for worldwide vessel mobility	THRUSTER	Expert advise with a global sales workforce of 90+ specialists
Standardized FAT procedures	for a lifetime	Customer-orientated development with experienced in-house R&D
Rudderpropeller plant with highest possible shop floor quality control	Permanent certification processes throughout production plants	Continuous quality check/audit of 100+ key suppliers

Our Quality Promise

COMMERCIAL AND COST MODEL

HOW WILL WE EVIDENCE OUR FINDINGS AND WHAT DOES IT POTENTIALLY MEAN?

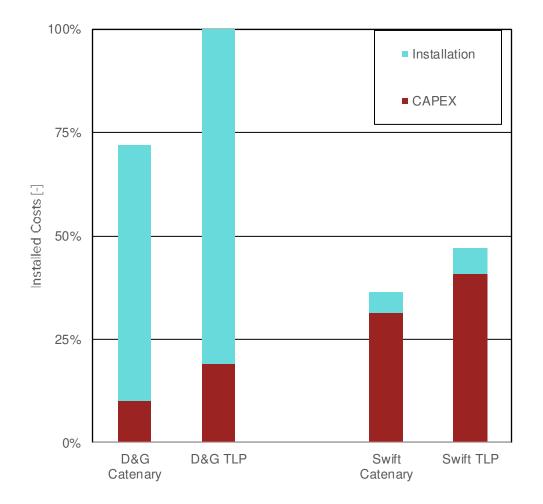


Installation Comparison – Time is your Friend

Drilled & Grouted Pile vs. Swift Anchor

- Preliminary analysis to be backed up by independent third party
- Equivalent drilled and grouted piles sized for same conditions
- Drilling time per pile computed based on drilling rates
- Additional time allowed for **grouting** of D&G piles
- Drilled and Grouted Piles can take up to 300-400% longer to install

	Catena	ry Example	Tension Leg Example		
	D&G	Swift Anchor	D&G	Swift Anchor	
Uplift [te]		10	1	1000	
Lateral [te]	1000			10	
GSI [%]		6	0		
UCS [MPa]		5	0		
Length [m]	8	3	15	8	
Diameter [m]	2	0.8	2	0.4	
Drilling rate [m/h]	0.5	2.7	0.5	2.7	



A Comprehensive Comparison to Come

Drilled & Grouted Pile vs. Swift Anchor – An Independent Assessment

- Swift Anchor installations likely cheaper like for like as:
 - Significantly shorter times
 - Requires a smaller installation vessel
 - Lower craneage requirements due to lower system mass
 - Smaller offshore deck spread, including scale of drill rig and no grouting assets required
- Ability to further derisk installation as a result of:
 - Reduced effect of weather as reduced operable windows required
 - Shorter install times and high wave state operability
- The harder the rock, the more efficient a Swift Anchor becomes as it relies on the inherrent strength of the rock
- There are significant opportunities to reduce installed costs by moving away from drilled and grouted piles to Swift Anchors in suitable rock seabeds
- This is just our word!

Installed Anchor Cost Comparison – Overall Savings

Drilled & Grouted Pile vs. Swift Anchor

- Assessment of Swift Anchors vs. Drilled and Grouted across a range of scenarios to understand:
 - CAPEX
 - **Operational costs** to install both solutions
 - Outcome: A combined "as installed" cost
 - Mooring savings
 - LCoE assessment
 - First pass CO2 assessment
- All to be validated as part of OWGP project using independant, market leading companies
 - London Marine Consultants Scope: Scaling, CAPEX and installation time and cost for drilled and grouted piles
 - **BVG Associates** Scope: Completing assessment of costs, LCoE and CO₂ outputs
- Objective: Understand the value proposition and areas where Swift Anchors can be cost advantegeous

Mooring	Load (te)	Load Angle to horizontal (°)	Depth (m)	Rock Strength
Catenary	1,000	0	100, 250 & 500	Poor, Medium and Good
Semi-taut	2,000	35	100, 250, 500	Poor, Medium and Good
TLP	4,000	90	250, 500	Poor, Medium and Good
TLP	5,000	90	250, 500	Poor, Medium and Good
			Notes:-	

Distance from construction port – 60kms

- 2. CoD 2028
- 3. Turbine Rating 15MW
- 4. No. of mooring legs 3
- 5. Rock Strength:-
 - 1. Poor (UCS 20MPa / GSI 30)
 - 2. Medium (UCS 80MPa / GSI 50)
 - 3. Good (UCS 150 MPa / GSI 75)

51

THANK YOU.

GET IN TOUCH AND WE LOOK FORWARD TO ANSWERING YOUR QUESTIONS

MICHAEL HOOK BUSINESS DEVELOPMENT DIRECTOR

michael.hook@schottel-mt.co.uk

NICK CRESSWELL ENGINEERING MANAGER

nick.cresswell@schottel-mt.co.uk

RALF STARZMANN COMMERCIAL DIRECTOR ralf.starzmann@schottel-mt.com